Tests multiple linear hypotheses simultaneously.
# S4 method for EL
elmt(object, rhs = NULL, lhs = NULL, alpha = 0.05, control = NULL)
An object that inherits from EL.
A numeric vector (column matrix) or a list of numeric vectors for
the right-hand sides of hypotheses. Defaults to NULL
. See ‘Details’.
A list or a numeric matrix for the left-hand sides of hypotheses.
For a list lhs
, each element must be specified as a single instance of
the lhs
in elt()
. For a matrix lhs
, each row gives a linear
combination of the parameters in object
. The number of columns must be
equal to the number of parameters. Defaults to NULL
. See ‘Details’.
A single numeric for the overall significance level. Defaults to
0.05
.
An object of class ControlEL constructed by
el_control()
. Defaults to NULL
and inherits the control
slot in
object
.
An object of class of ELMT.
elmt()
tests multiple hypotheses simultaneously. Each hypothesis
corresponds to the constrained empirical likelihood ratio described in
CEL. rhs
and lhs
cannot be both NULL
. The right-hand
side and left-hand side of each hypothesis must be specified as described
in elt()
.
For specifying linear contrasts more conveniently, rhs
and lhs
also
take a numeric vector and a numeric matrix, respectively. Each element of
rhs
and each row of lhs
correspond to a contrast (hypothesis).
The vector of empirical likelihood ratio statistics asymptotically follows
a multivariate chi-square distribution under the complete null hypothesis.
The multiple testing procedure asymptotically controls the family-wise
error rate at the level alpha
. Based on the distribution of the maximum
of the test statistics, the adjusted p-values are estimated by Monte Carlo
simulation.
Kim E, MacEachern SN, Peruggia M (2023). ``Empirical likelihood for the analysis of experimental designs.'' Journal of Nonparametric Statistics, 35(4), 709--732. doi:10.1080/10485252.2023.2206919 .
Kim E, MacEachern SN, Peruggia M (2024). ``melt: Multiple Empirical Likelihood Tests in R.'' Journal of Statistical Software, 108(5), 1--33. doi:10.18637/jss.v108.i05 .
EL, ELMT, elt()
, el_control()
## Bivariate mean (list `rhs` & no `lhs`)
set.seed(143)
data("women")
fit <- el_mean(women, par = c(65, 135))
rhs <- list(c(64, 133), c(66, 140))
elmt(fit, rhs = rhs)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Chisq Df
#> 1 2.069 2
#> 2 1.255 2
#>
## Pairwise comparison (no `rhs` & list `lhs`)
data("clothianidin")
fit2 <- el_lm(clo ~ -1 + trt, clothianidin)
lhs2 <- list(
"trtNaked - trtFungicide",
"trtFungicide - trtLow",
"trtLow - trtHigh"
)
elmt(fit2, lhs = lhs2)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Estimate Chisq Df
#> trtNaked - trtFungicide = 0 -1.0525 5.510 1
#> trtFungicide - trtLow = 0 -0.6269 1.062 1
#> trtLow - trtHigh = 0 -1.4932 3.774 1
#>
## Arbitrary hypotheses (list `rhs` & list `lhs`)
data("mtcars")
fit3 <- el_lm(mpg ~ wt + qsec, data = mtcars)
lhs3 <- list(c(1, 4, 0), rbind(c(0, 1, 0), c(0, 0, 1)))
rhs3 <- list(0, c(-6, 1))
elmt(fit3, rhs = rhs3, lhs = lhs3)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Chisq Df
#> 1 0.037 1
#> 2 2.790 2
#>