All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at \(p = 10\), and simulate the parameter value and \(n \times p\) matrices using rnorm(). In order to ensure convergence with a large \(n\), we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min          lq        mean      median         uq        max
#>  n1e2    443.547    480.9065    518.9974    496.8265    548.883    825.529
#>  n1e3   1168.178   1353.5780   2327.9855   1434.4295   1602.052  73838.491
#>  n1e4  10433.479  12794.9310  14352.7309  14663.9095  15456.943  21782.395
#>  n1e5 169461.720 223962.9690 265156.7597 252638.8225 316444.171 410333.021
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result)

Increasing the number of parameters

This time we fix the number of observations at \(n = 1000\), and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min          lq        mean     median          uq        max
#>    p5    715.554    767.4505    832.0326    791.751    829.6165   3910.269
#>   p25   2715.402   2759.6440   2895.7267   2801.678   2860.2215   6707.533
#>  p100  21704.880  24065.2350  26217.4337  25080.387  28799.2440  45835.691
#>  p400 253630.477 278978.2515 312110.3298 298370.866 339284.6875 459820.159
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.