Generate report from previously-created daiquiri_source_data
and
daiquiri_aggregated_data
objects
Usage
report_data(
source_data,
aggregated_data,
report_title = "daiquiri data quality report",
save_directory = ".",
save_filename = NULL,
format = "html",
show_progress = TRUE,
...
)
Arguments
- source_data
A
daiquiri_source_data
object returned fromprepare_data()
function- aggregated_data
A
daiquiri_aggregated_data
object returned fromaggregate_data()
function- report_title
Title to appear on the report
- save_directory
String specifying directory in which to save the report. Default is current directory.
- save_filename
String specifying filename for the report, excluding any file extension. If no filename is supplied, one will be automatically generated with the format
daiquiri_report_YYMMDD_HHMMSS
.- format
File format of the report. Currently only
"html"
is supported- show_progress
Print progress to console. Default =
TRUE
- ...
Further parameters to be passed to
rmarkdown::render()
. Cannot include any ofinput
,output_dir
,output_file
,params
,quiet
.
Examples
# \donttest{
# load example data into a data.frame
raw_data <- read_data(
system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
delim = ",",
col_names = TRUE
)
# validate and prepare the data for aggregation
source_data <- prepare_data(
raw_data,
field_types = field_types(
PrescriptionID = ft_uniqueidentifier(),
PrescriptionDate = ft_timepoint(),
AdmissionDate = ft_datetime(includes_time = FALSE),
Drug = ft_freetext(),
Dose = ft_numeric(),
DoseUnit = ft_categorical(),
PatientID = ft_ignore(),
Location = ft_categorical(aggregate_by_each_category = TRUE)
),
override_column_names = FALSE,
na = c("", "NULL"),
dataset_description = "Example data provided with package",
show_progress = TRUE
)
#> field_types supplied:
#> PrescriptionID <uniqueidentifier>
#> PrescriptionDate <timepoint> options: includes_time
#> AdmissionDate <datetime>
#> Drug <freetext>
#> Dose <numeric>
#> DoseUnit <categorical>
#> PatientID <ignore>
#> Location <categorical> options: aggregate_by_each_category
#>
#> Checking column names against field_types...
#> Importing source data [Example data provided with package]...
#> Removing column-specific na values...
#> Checking data against field_types...
#> Selecting relevant warnings...
#> Identifying nonconformant values...
#> Checking and removing missing timepoints...
#> Checking for duplicates...
#> Sorting data...
#> Loading into source_data structure...
#> PrescriptionID
#> PrescriptionDate
#> AdmissionDate
#> Drug
#> Dose
#> DoseUnit
#> PatientID
#> Location
#> Finished
# aggregate the data
aggregated_data <- aggregate_data(
source_data,
aggregation_timeunit = "day",
show_progress = TRUE
)
#> Aggregating [] by [day]...
#> Aggregating overall dataset...
#> Aggregating each data_field in turn...
#> 1: PrescriptionID
#> Preparing...
#> Aggregating character field...
#> By n
#> By missing_n
#> By missing_perc
#> By min_length
#> By max_length
#> By mean_length
#> Finished
#> 2: PrescriptionDate
#> Preparing...
#> Aggregating double field...
#> By n
#> By midnight_n
#> By midnight_perc
#> Finished
#> 3: AdmissionDate
#> Preparing...
#> Aggregating double field...
#> By n
#> By missing_n
#> By missing_perc
#> By nonconformant_n
#> By nonconformant_perc
#> By min
#> By max
#> Finished
#> 4: Drug
#> Preparing...
#> Aggregating character field...
#> By n
#> By missing_n
#> By missing_perc
#> Finished
#> 5: Dose
#> Preparing...
#> Aggregating double field...
#> By n
#> By missing_n
#> By missing_perc
#> By nonconformant_n
#> By nonconformant_perc
#> By min
#> By max
#> By mean
#> By median
#> Finished
#> 6: DoseUnit
#> Preparing...
#> Aggregating character field...
#> By n
#> By missing_n
#> By missing_perc
#> By distinct
#> Finished
#> 7: Location
#> Preparing...
#> Aggregating character field...
#> By n
#> By missing_n
#> By missing_perc
#> By distinct
#> By subcat_n
#> 4 categories found
#> 1: SITE1
#> 2: SITE2
#> 3: SITE3
#> 4: SITE4
#> By subcat_perc
#> 4 categories found
#> 1: SITE1
#> 2: SITE2
#> 3: SITE3
#> 4: SITE4
#> Finished
#> Aggregating calculated fields...
#> [DUPLICATES]:
#> Preparing...
#> Aggregating integer field...
#> By sum
#> By nonzero_perc
#> Finished
#> [ALL_FIELDS_COMBINED]:
#> Finished
# save a report in the current directory using the previously-created objects
report_data(
source_data,
aggregated_data,
report_title = "daiquiri data quality report",
save_directory = ".",
save_filename = "example_data_report",
show_progress = TRUE
)
#> Generating html report...
#>
#>
#> processing file: report_htmldoc.Rmd
#> 1/34
#> 2/34 [daiquiri-setup]
#> 3/34
#> 4/34 [daiquiri-styles]
#> 5/34
#> 6/34 [daiquiri-strata-info]
#> 7/34
#> 8/34 [daiquiri-source-data]
#> 9/34
#> 10/34 [daiquiri-fields-imported]
#> 11/34
#> 12/34 [daiquiri-fields-ignored]
#> 13/34
#> 14/34 [daiquiri-validation-warnings]
#> 15/34
#> 16/34 [daiquiri-source-data-summary]
#> 17/34
#> 18/34 [daiquiri-aggregated-data]
#> 19/34
#> 20/34 [daiquiri-overview-strata]
#> 21/34
#> 22/34 [daiquiri-overview-presence]
#> 23/34
#> 24/34 [daiquiri-overview-missing]
#> 25/34
#> 26/34 [daiquiri-overview-nonconformant]
#> 27/34
#> 28/34 [daiquiri-overview-duplicates]
#> 29/34
#> 30/34 [daiquiri-aggregated-data-summary]
#> 31/34
#> 32/34 [daiquiri-individual-fields-set-fig-height]
#> 33/34
#> 34/34 [daiquiri-individual-fields]
#> output file: report_htmldoc.knit.md
#> "C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/pandoc" +RTS -K512m -RTS report_htmldoc.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output pandoca0844433eec.html --lua-filter "C:\Users\pquan\Documents\Rworkspace\library\rmarkdown\rmarkdown\lua\pagebreak.lua" --lua-filter "C:\Users\pquan\Documents\Rworkspace\library\rmarkdown\rmarkdown\lua\latex-div.lua" --embed-resources --standalone --variable bs3=TRUE --section-divs --template "C:\Users\pquan\Documents\Rworkspace\library\rmarkdown\rmd\h\default.html" --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable "mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" --include-in-header "C:\Users\pquan\AppData\Local\Temp\RtmpuwDzBy\rmarkdown-stra08453623591.html"
#>
#> Output created: example_data_report.html
#> Report saved to: ./example_data_report.html
#> [1] "./example_data_report.html"
file.remove("./example_data_report.html")
#> [1] TRUE
# }