Skip to contents

S3 method to flatten an npi_results object

Usage

npi_flatten(df, cols, key)

Arguments

df

A data frame containing the results of a call to npi_search.

cols

If non-NULL, only the named columns specified here will be be flattened and returned along with npi.

key

A quoted column name from df to use as a matching key. The default value is "npi".

Value

A data frame (tibble) with flattened list columns.

Examples

# Flatten all list columns
data(npis)
npi_flatten(npis)
#> # A tibble: 48 × 42
#>           npi basic_fi…¹ basic…² basic…³ basic…⁴ basic…⁵ basic…⁶ basic…⁷ basic…⁸
#>         <int> <chr>      <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <chr>  
#>  1 1194276360 ALYSSA     COWNAN  PA      NO      F       2016-1… 2018-0… A      
#>  2 1194276360 ALYSSA     COWNAN  PA      NO      F       2016-1… 2018-0… A      
#>  3 1306849641 MARK       MOHRMA… MD      NO      M       2005-0… 2019-0… A      
#>  4 1306849641 MARK       MOHRMA… MD      NO      M       2005-0… 2019-0… A      
#>  5 1306849641 MARK       MOHRMA… MD      NO      M       2005-0… 2019-0… A      
#>  6 1306849641 MARK       MOHRMA… MD      NO      M       2005-0… 2019-0… A      
#>  7 1326403213 RAJEE      KRAUSE  AGPCNP… NO      F       2015-1… 2019-0… A      
#>  8 1326403213 RAJEE      KRAUSE  AGPCNP… NO      F       2015-1… 2019-0… A      
#>  9 1326403213 RAJEE      KRAUSE  AGPCNP… NO      F       2015-1… 2019-0… A      
#> 10 1326403213 RAJEE      KRAUSE  AGPCNP… NO      F       2015-1… 2019-0… A      
#> # … with 38 more rows, 33 more variables: basic_name <chr>,
#> #   basic_name_prefix <chr>, basic_middle_name <chr>,
#> #   basic_organization_name <chr>, basic_organizational_subpart <chr>,
#> #   basic_authorized_official_credential <chr>,
#> #   basic_authorized_official_first_name <chr>,
#> #   basic_authorized_official_last_name <chr>,
#> #   basic_authorized_official_middle_name <chr>, …

# Only flatten specified columns
npi_flatten(npis, cols = c("basic", "identifiers"))
#> # A tibble: 12 × 25
#>           npi basic_fi…¹ basic…² basic…³ basic…⁴ basic…⁵ basic…⁶ basic…⁷ basic…⁸
#>         <int> <chr>      <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <chr>  
#>  1 1194276360 ALYSSA     COWNAN  PA      NO      F       2016-1… 2018-0… A      
#>  2 1306849641 MARK       MOHRMA… MD      NO      M       2005-0… 2019-0… A      
#>  3 1326403213 RAJEE      KRAUSE  AGPCNP… NO      F       2015-1… 2019-0… A      
#>  4 1346604592 SARAH      LOWRY   OTR/L   YES     F       2016-0… 2018-0… A      
#>  5 1427454529 YONGHONG   TAN     NA      NO      F       2014-1… 2018-1… A      
#>  6 1558362566 AMY        TIERST… M.D.    YES     F       2005-0… 2019-0… A      
#>  7 1558713628 ROBYN      NOHLING FNP-BC… YES     F       2016-0… 2018-0… A      
#>  8 1639173065 SAKSHI     DUA     M.D.    YES     F       2005-0… 2019-0… A      
#>  9 1639173065 SAKSHI     DUA     M.D.    YES     F       2005-0… 2019-0… A      
#> 10 1639173065 SAKSHI     DUA     M.D.    YES     F       2005-0… 2019-0… A      
#> 11 1790786416 NOAH       GOLDMAN M.D.    NO      M       2005-0… 2018-0… A      
#> 12 1962983775 NA         NA      NA      NA      NA      2018-0… 2018-0… A      
#> # … with 16 more variables: basic_name <chr>, basic_name_prefix <chr>,
#> #   basic_middle_name <chr>, basic_organization_name <chr>,
#> #   basic_organizational_subpart <chr>,
#> #   basic_authorized_official_credential <chr>,
#> #   basic_authorized_official_first_name <chr>,
#> #   basic_authorized_official_last_name <chr>,
#> #   basic_authorized_official_middle_name <chr>, …