Get daily precipitation data from the "Climate Hazards Group InfraRed
Precipitation with Station Data" via ClimateSERV API client.
ClimateSERV works with geojson of type 'Polygon'. The input object
is then transformed into polygons with a small buffer area around the point.
get_chirps(object, dates, operation = 5, ...) # S3 method for default get_chirps(object, dates, operation = 5, ...) # S3 method for sf get_chirps(object, dates, operation = 5, as.sf = FALSE, ...) # S3 method for geojson get_chirps(object, dates, operation = 5, as.geojson = FALSE, ...)
object | input, an object of class |
---|---|
dates | a character of start and end dates in that order in the format "YYYY-MM-DD" |
operation | optional, an integer that represents which type of statistical operation to perform on the dataset |
... | further arguments passed to |
as.sf | logical, returns an object of class |
as.geojson | logical, returns an object of class |
A data frame of CHIRPS data:
the index for the rows in object
the dates from which CHIRPS was requested
the longitude as provided in object
the latitude as provided in object
the CHIRPS value in mm
operation: supported operations are:
operation | value | |
max | = | 0 |
min | = | 1 |
median | = | 2 |
sum | = | 4 |
average | = | 5 (default value) |
dist: numeric, buffer distance for each object
coordinate
nQuadSegs: integer, number of segments per buffer quadrant
get_chirps may return some warning messages given by
sf
, please look sf documentation for
possible issues.
Funk C. et al. (2015). Scientific Data, 2, 150066.
https://doi.org/10.1038/sdata.2015.66
ClimateSERV https://climateserv.servirglobal.net
# \donttest{ lonlat <- data.frame(lon = c(-55.0281,-54.9857), lat = c(-2.8094, -2.8756)) dates <- c("2017-12-15", "2017-12-31") dt <- get_chirps(lonlat, dates)#>dt#> id lon lat date chirps #> <int> <dbl> <dbl> <date> <dbl> #> 1: 1 -55.03 -2.81 2017-12-15 0.00 #> 2: 1 -55.03 -2.81 2017-12-16 0.00 #> 3: 1 -55.03 -2.81 2017-12-17 13.69 #> 4: 1 -55.03 -2.81 2017-12-18 13.69 #> 5: 1 -55.03 -2.81 2017-12-19 0.00 #> --- #> 30: 2 -54.99 -2.88 2017-12-27 37.54 #> 31: 2 -54.99 -2.88 2017-12-28 18.77 #> 32: 2 -54.99 -2.88 2017-12-29 0.00 #> 33: 2 -54.99 -2.88 2017-12-30 9.39 #> 34: 2 -54.99 -2.88 2017-12-31 9.39# }